

COMUNE DI MONTE SAN PIETRO

SERVIZIO LAVORI PUBBLICI
IV Settore - Gestione del Patrimonio

IMPIANTO FOTOVOLTAICO A SERVIZIO DEL COMPLESSO EDILIZIO ADIBITO AD ASILO NIDO E INFANZIA DI AMOLA, SITO IN VIA AMOLA N.11

CIG.Z0B29D0F17

RESPONSABILE DEL PROCEDIMENTO:

dott.ing. Silvia Malaguti Resp. IV Settore - Gestione del Patrimonio

Piazza della Pace n. 2

40050 - Monte San Pietro (BO)

PROGETTISTA IMPIANTI ELETTRICI:

per.ind. Uber Demola Via Zannoni n. 45 40134 - Bologna tel./fax 0519.919.772 email uber.demola@progise

Perito Industriale
DEMOLA UBER
| Sentizione N° 2406

PROGETTO DEFINITIVO/ESECUTIVO

ELABORATO	редетто:
IERT	RELAZIONE TECNICA
DATA	
7 Ottobre 2019	
SCALA	
-	
AGGIORNAMENTI:	

Tutti i diritti riservati vietata la riproduzione anche parziale di questo documento senza autorizzazione

RELAZIONE TECNICA

PER LA REALIZZAZIONE DI UN
IMPIANTO FOTOVOLTAICO DA 8,16 kWp
SITO NEL COMUNE DI
Monte San Pietro
Via Amola 11
Bologna

COMMITTENTE:

Comune di Monte San Pietro

Allegati:

• IE01 – Planimetria e schemi elettrici.

DATA

07/10/2019

IL TECNICO

Uber Demola

DATI GENERALI DELL'IMPIANTO

Il presente progetto è relativo alla realizzazione di un impianto di produzione di energia elettrica tramite conversione fotovoltaica, avente una potenza di picco pari a 8,16 kWp.

COMMITTENTE	
Committente:	Comune di Monte San Pietro
Indirizzo:	Via Lavino Monte San Pietro

SITO DI INSTALLAZIONE

L'impianto Impianto Fotovoltaico presenta le seguenti caratteristiche: Nuovo Impianto Fotovoltaico da 8,16 kW a servizio di edificio scolastico.

DATI RELATIVI ALLA LOCALITÀ DI INSTALLAZIONE		
Località:	Monte San Pietro Via Amola 11	
Latitudine:	044°29'34"	
Longitudine:	011°12'40"	
Altitudine:	74 m	
Fonte dati climatici:	UNI 10349	
Albedo:	0 %	

DIMENSIONAMENTO DELL'IMPIANTO

La quantità di energia elettrica producibile sarà calcolata sulla base dei dati radiometrici di cui alla norma UNI 10349 e utilizzando i metodi di calcolo illustrati nella norma UNI 8477-1.

Per gli impianti verranno rispettate le seguenti condizioni (da effettuare per ciascun "generatore fotovoltaico", inteso come insieme di moduli fotovoltaici con stessa inclinazione e stesso orientamento):

in fase di avvio dell'impianto fotovoltaico, il rapporto fra l'energia o la potenza prodotta in corrente alternata e l'energia o la potenza producibile in corrente alternata (determinata in funzione dell'irraggiamento solare incidente sul piano dei moduli, della potenza nominale dell'impianto e della temperatura di funzionamento dei moduli) sia almeno superiore a 0, 78 nel caso di utilizzo di inverter di potenza fino a 20 kW e 0,8 nel caso di utilizzo di inverter di potenza superiore, nel rispetto delle condizioni di misura e dei metodi di calcolo descritti nella medesima Guida CEI 82-25.

Non sarà ammesso il parallelo di stringhe non perfettamente identiche tra loro per esposizione, e/o marca, e/o modello, e/o numero dei moduli impiegati. Ciascun modulo, infine, sarà dotato di diodo di by-pass.

Sarà, inoltre, sempre rilevabile l'energia prodotta (cumulata) e le relative ore di funzionamento.

DESCRIZIONE DELL'IMPIANTO

L'impianto fotovoltaico è costituito da n° 1 generatori fotovoltaici composti da n° 24 moduli fotovoltaici e da n° 1 inverter con tipo di realizzazione Su edificio.

La potenza nominale complessiva è di 8,16 kWp per una produzione di 8.977,2 kWh annui distribuiti su una superficie di 46,56 m².

Modalità di connessione alla rete Trifase in Bassa tensione con tensione di fornitura 400 V.

EMISSIONI

L'impianto riduce le emissioni inquinanti in atmosfera secondo la seguente tabella annuale:

Equivalenti di produzione termoelettrica		
Anidride solforosa (SO ₂): 6,29 kg		
Ossidi di azoto (NO _x):	7,92 kg	
Polveri: 0,28 kg		
Anidride carbonica (CO ₂): 4,68 t		

Equivalenti di produzione geotermica	
Idrogeno solforato (H ₂ S) (fluido geotermico):	0,28 kg
Anidride carbonica (CO ₂):	0,05 t
Tonnellate equivalenti di petrolio (TEP):	2,24 TEP

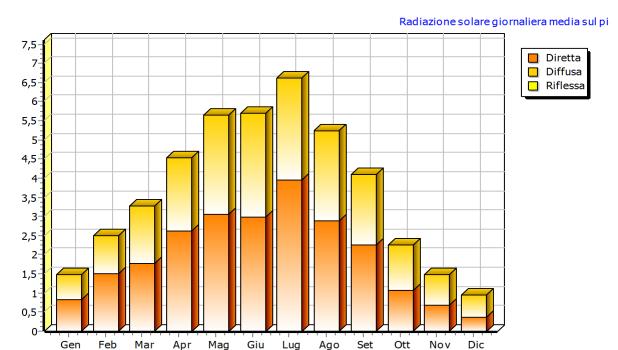
RADIAZIONE SOLARE

La valutazione della risorsa solare disponibile è stata effettuata in base alla Norma UNI 10349, prendendo come riferimento la località che dispone dei dati storici di radiazione solare nelle immediate vicinanze di Monte San Pietro.

TABELLA DI RADIAZIONE SOLARE SUL PIANO ORIZZONTALE

Mese	Totale giornaliero [MJ/m²]	Totale mensile [MJ/m²]
Gennaio	4,53	140,43
Febbraio	7,95	222,6
Marzo	11,04	342,24
Aprile	15,79	473,7
Maggio	20,09	622,79
Giugno	20,42	612,6
Luglio	23,57	730,67
Agosto	18,42	571,02
Settembre	13,99	419,7
Ottobre	7,52	233,12
Novembre	4,77	143,1
Dicembre	3,03	93,93

TABELLA PRODUZIONE ENERGIA


Mese	Totale giornaliero [kWh]	Totale mensile [kWh]
Gennaio	9,962	308,822
Febbraio	16,83	471,24
Marzo	22,031	682,954
Aprile	30,559	916,785
Maggio	38,041	1179,264
Giugno	38,37	1151,101
Luglio	44,472	1378,631
Agosto	35,265	1093,205
Settembre	27,533	825,984
Ottobre	15,205	471,358
Novembre	10,025	300,754
Dicembre	6,357	197,068

ESPOSIZIONI

L'impianto fotovoltaico è composto da n 1 generatore distribuito avente unica esposizione

Descrizione	Tipo realizzazione	Tipo installazione	Orient.	Inclin.
Esposizione 1	Su edificio	Inclinazione fissa	24°	10°

DIAGRAMMA RADIAZIONE SOLARE

TABELLA DI RADIAZIONE SOLARE

Mese	Radiazione Diretta [kWh/m²]	Radiazione Diffusa [kWh/m²]	Radiazione Riflessa [kWh/m²]	Totale giornaliero [kWh/m²]	Totale mensile [kWh/m ²]
Gennaio	0,813	0,667	0	1,481	45,896
Febbraio	1,503	0,998	0	2,501	70,034
Marzo	1,78	1,494	0	3,274	101,499
Aprile	2,606	1,935	0	4,542	136,25
Maggio	3,054	2,6	0	5,654	175,259
Giugno	2,993	2,71	0	5,702	171,073
Luglio	3,955	2,655	0	6,609	204,888
Agosto	2,889	2,351	0	5,241	162,469
Settembre	2,242	1,85	0	4,092	122,755
Ottobre	1,077	1,183	0	2,26	70,052
Novembre	0,682	0,808	0	1,49	44,697
Dicembre	0,363	0,582	0	0,945	29,288

STRUTTURE DI SOSTEGNO

I moduli verranno montati su dei supporti in acciaio zincato aderenti al piano di copertura, idonei per il tipo di supporto e avranno tutti la medesima esposizione. Gli ancoraggi della struttura dovranno resistere a raffiche di vento fino alla velocità di 120 km/h, oltre a non dover alterare le caratteristiche di impermeabilità del piano di copertura.

Il generatore è composto da n° 24 moduli del tipo Silicio policristallino con una vita utile stimata di oltre 20 anni e degradazione della produzione dovuta ad invecchiamento del 0,8 % annuo.

CARATTERISTICHE DEL GENERATORE FOTOVOLTAICO		
Tipo di realizzazione:	Su edificio	
Numero di moduli:	24	
Numero inverter:	1	
Potenza nominale:	8160 W	
Performance ratio: 82,5 %		

DATI COSTRUTTIVI DEI MODULI		
Costruttore:	PEIMAR o superiore	
Serie / Sigla:	SG SG340P o superiore	
Tecnologia costruttiva:	Silicio policristallino	
Caratteristiche elettriche		
Potenza massima:	340 W	
Rendimento:	17,5 %	
Tensione nominale:	38,3 V	
Tensione a vuoto:	46,7 V	
Corrente nominale:	8,9 A	
Corrente di corto circuito:	9,5 A	
Dimensioni		
Dimensioni:	992 mm x 1956 mm	
Peso:	22,5 kg	

I valori di tensione alle varie temperature di funzionamento (minima, massima e d'esercizio) rientrano nel range di accettabilità ammesso dall'inverter.

La linea elettrica proveniente dai moduli fotovoltaici è messa a terra mediante appositi scaricatori di sovratensione con indicazione ottica di fuori servizio, al fine di garantire la protezione dalle scariche di origine atmosferica.

GRUPPO DI CONVERSIONE

Il gruppo di conversione è composto dai convertitori statici (Inverter).

Il convertitore c.c./c.a. utilizzato è idoneo al trasferimento della potenza dal campo fotovoltaico alla rete del distributore, in conformità ai requisiti normativi tecnici e di sicurezza applicabili. I valori della tensione e della corrente di ingresso di questa apparecchiatura sono compatibili con quelli del rispettivo campo fotovoltaico, mentre i valori della tensione e della frequenza in uscita sono compatibili con quelli della rete alla quale viene connesso l'impianto

Le caratteristiche principali del gruppo di conversione sono:

- Inverter a commutazione forzata con tecnica PWM (pulse-width modulation), senza clock e/o riferimenti interni di tensione o di corrente, assimilabile a "sistema non idoneo a sostenere la tensione e frequenza nel campo normale", in conformità a quanto prescritto per i sistemi di produzione dalla norma CEI 11-20 e dotato di funzione MPPT (inseguimento della massima potenza)
- Ingresso lato cc da generatore fotovoltaico gestibile con poli non connessi a terra, ovvero

- con sistema IT.
- □ Rispondenza alle norme generali su EMC e limitazione delle emissioni RF: conformità norme CEI 110-1, CEI 110-6, CEI 110-8.
- Protezioni per la sconnessione dalla rete per valori fuori soglia di tensione e frequenza della rete e per sovracorrente di guasto in conformità alle prescrizioni delle norme CEI 11-20 ed a quelle specificate dal distributore elettrico locale. Reset automatico delle protezioni per predisposizione ad avviamento automatico.
- □ Conformità marchio CE.
- □ Grado di protezione adeguato all'ubicazione in prossimità del campo fotovoltaico (IP65).
- □ Dichiarazione di conformità del prodotto alle normative tecniche applicabili, rilasciato dal costruttore, con riferimento a prove di tipo effettuate sul componente presso un organismo di certificazione abilitato e riconosciuto.
- □ Campo di tensione di ingresso adeguato alla tensione di uscita del generatore FV.
- □ Efficienza massima >= 90% al 70% della potenza nominale.

Dati costruttivi degli inverter		
Costruttore:	SMA TECHNOLOGIE AG o superiore	
Serie / Sigla:	Sunny TriPower STP 8000TL-20 o superiore	
Inseguitori:	2	
Ingressi per inseguitore:	2	
Caratteristiche elettriche		
Potenza nominale:	8 kW	
Potenza massima:	8,2 kW	
Potenza massima per inseguitore:	4,9 kW	
Tensione nominale:	600 V	
Tensione massima:	1000 V	
Tensione minima per inseguitore:	150 V	
Tensione massima per inseguitore:	800 V	
Tensione nominale di uscita:	400 Vac	
Corrente nominale:	25 A	
Corrente massima:	25 A	
Corrente massima per inseguitore:	15 A	
Rendimento:	0,98	

Inverter 1	MPPT 1	MPPT 2
Moduli in serie:	14	10
Stringhe in parallelo:	1	1
Esposizioni:	Esposizione 1	Esposizione 1
Tensione di MPP (STC):	536,2 V	383 V
Numero di moduli:	14	10

NB l'inverter dovrà comunque essere conforme ai regolamenti del gestore della rete al momento della richiesta di allaccio alla rete stessa.

DIMENSIONAMENTO

La potenza nominale del generatore è data da:

P = Pmodulo * N°moduli = 340 W * 24 = 8160 W

L'energia totale prodotta dall'impianto alle condizioni STC (irraggiamento dei moduli di 1000 W/m² a 25°C di temperatura) si calcola come:

Esposizione	N° moduli	Radiazione solare [kWh/m ²]	Energia [kWh]
Esposizione 1	24	1.334,16	10.886,76

E = En * (1-Disp) = 8977,2 kWh

dove

Disp = Perdite di potenza ottenuta da

Perdite per aumento di temperatura:	5,0 %
Perdite di mismatching:	5,0 %
Perdite in corrente continua:	1,5 %
Altre perdite (sporcizia, tolleranze):	5,0 %
Perdite per conversione:	2,4 %
Perdite totali:	17,5 %

CAVI ELETTRICI E CABLAGGI

Il cablaggio elettrico avverrà per mezzo di cavi con conduttori isolati in rame con le seguenti prescrizioni:

- Sezione delle anime in rame calcolate secondo norme CEI-UNEL/IEC
- ☐ Tipo FG21 se in esterno o FG16 se in cavidotti su percorsi interrati
- ☐ Tipo FG17 se all'interno di cavidotti di edifici

Inoltre i cavi saranno a norma CEI 20-13, CEI20-22II e CEI 20-37 I, marchiatura I.M.Q., colorazione delle anime secondo norme UNEL.

Per non compromettere la sicurezza di chi opera sull'impianto durante la verifica o l'adeguamento o la manutenzione, i conduttori avranno la seguente colorazione:

□ Conduttori di protezione: giallo-verde (obbligatorio)□ Conduttore di neutro: blu chiaro (obbligatorio)

□ Conduttore di fase: grigio / marrone

□ Conduttore per circuiti in C.C.: chiaramente siglato con indicazione del positivo con "+" e del negativo con "-"

Come è possibile notare dalle prescrizioni sopra esposte, le sezioni dei conduttori degli impianti fotovoltaici sono sicuramente sovradimensionate per le correnti e le limitate distanze in gioco.

Con tali sezioni la caduta di potenziale viene contenuta entro il 2% del valore misurato da qualsiasi modulo posato al gruppo di conversione.

Cablaggio: Stringa - Q. Campo

Descrizione	Valore
Identificazione:	H1Z2Z2 0.6/1kV 1x4 rosso H1Z2Z2 0.6/1kV 1x4 blu
Lunghezza complessiva:	38 m
Lunghezza di dimensionamento:	40 m
Circuiti in prossimità:	2
Temperatura ambiente:	30°
Tabella:	CEI-UNEL 35024/1 (PVC/EPR)
Posa:	4 - cavi unipolari senza guaina in tubi protettivi non circolari posati su pareti
Disposizione:	Raggruppati a fascio, annegati
Tipo cavo:	Unipolare
Materiale:	Rame
Designazione:	H1Z2Z2 (PV1500V cc)
Tipo di isolante:	EPR
Formazione:	2x(1x4)
N° conduttori positivo/fase:	1
Sez. positivo/fase:	4 mm²
N° conduttori negativo/neutro:	1
Sez. negativo/neutro:	4 mm²
N° conduttori PE:	
Sez. PE:	
Tensione nominale:	536 V
Corrente d'impiego:	8,9 A
Corrente di c.c. moduli	9,5 A

Cablaggio: Q. Campo - Q. Inverter

Descrizione	Valore
Identificazione:	
Lunghezza complessiva:	35 m
Lunghezza di dimensionamento:	35 m
Circuiti in prossimità:	1
Temperatura ambiente:	30°
Tabella:	CEI-UNEL 35024/1 (PVC/EPR)
Posa:	3A - cavi multipolari in tubi protettivi circolari distanziati da pareti
Disposizione:	Raggruppati a fascio, annegati
Tipo cavo:	Unipolare
Materiale:	Rame
Designazione:	H1Z2Z2
Tipo di isolante:	PVC

Formazione:	1x4
N° conduttori positivo/fase:	1
Sez. positivo/fase:	4 mm ²
N° conduttori negativo/neutro:	1
Sez. negativo/neutro:	4 mm ²
Sez. PE:	4 mm ²
Tensione nominale:	536 V
Corrente d'impiego:	8,9 A
Corrente di c.c. moduli	9,5 A

Tabella di riepilogo cavi					
Codice	Costruttore	Form.	Des.	Descrizione	Lc
1		2x(1x4)	H1Z2Z2 (PV1500V cc)	FG7M2 0.6/1kV 1x4 rosso	38 m
1neg		2x(1x4)	H1Z2Z2 (PV1500V cc)	FG7M2 0.6/1kV 1x4 nero	38 m
Q. Campo - Q. Inverter		2x(1x4)+1 G4	H1Z2Z2/FG 17 1G4		35 m

QUADRI ELETTRICI

Quadro di campo lato corrente continua

Si prevede di installare un quadro a monte di ogni convertitore per il collegamento in parallelo delle stringhe, il sezionamento, la misurazione e il controllo dei dati in uscita dal generatore.

Quadro di parallelo lato corrente alternata

Si prevede di installare un quadro di parallelo in alternata all'interno di in una cassetta posta a valle dei convertitori statici per la misurazione, il collegamento e il controllo delle grandezze in uscita dagli inverter. All'interno di tale quadro, sarà inserito il sistema di interfaccia alla rete e il contatore in uscita della Società distributrice dell'energia elettrica ENEL spa.

SEPARAZIONE GALVANICA E MESSA A TERRA

Deve essere prevista la separazione galvanica tra la parte in corrente continua dell'impianto e la rete; tale separazione può essere sostituita da una protezione sensibile alla corrente continua se la potenza complessiva di produzione non supera i 20 kW.

Soluzioni tecniche diverse da quelle sopra suggerite, sono adottabili, purché nel rispetto delle norme vigenti e della buona regola dell'arte.

Il campo fotovoltaico sarà gestito come sistema IT, ovvero con nessun polo connesso a terra. Le stringhe saranno, costituite dalla serie di singoli moduli fotovoltaici e singolarmente sezionabili, provviste di diodo di blocco e di protezioni contro le sovratensioni.

Ai fini della sicurezza, se la rete di utente o parte di essa è ritenuta non idonea a sopportare la maggiore intensità di corrente disponibile (dovuta al contributo dell'impianto fotovoltaico), la rete stessa o la parte interessata dovrà essere opportunamente protetta.

La struttura di sostegno verrà regolarmente collegata all'impianto di terra esistente.

VERIFICHE

Al termine dei lavori l'installatore dell'impianto effettuerà le seguenti verifiche tecnico-funzionali:

- corretto funzionamento dell'impianto fotovoltaico nelle diverse condizioni di potenza generata e nelle varie modalità previste dal gruppo di conversione (accensione, spegnimento, mancanza rete, ecc.);
- □ continuità elettrica e connessioni tra moduli;
- messa a terra di masse e scaricatori:
- □ isolamento dei circuiti elettrici dalle masse:

L'impianto deve essere realizzato con componenti che in fase di avvio dell'impianto fotovoltaico, il rapporto fra l'energia o la potenza prodotta in corrente alternata e l'energia o la potenza producibile in corrente alternata (determinata in funzione dell'irraggiamento solare incidente sul piano dei moduli, della potenza nominale dell'impianto e della temperatura di funzionamento dei moduli) sia almeno superiore a 0, 78 nel caso di utilizzo di inverter di potenza fino a 20 kW e 0,8 nel caso di utilizzo di inverter di potenza superiore, nel rispetto delle condizioni di misura e dei metodi di calcolo descritti nella medesima Guida CEI 82-25.

Il generatore Impianto Fotovoltaico soddisfa le seguenti condizioni:

Limiti in tensione

Tensione minima Vn a 70,00 °C (315,7 V) maggiore di Vmpp min. (150,0 V)

Tensione massima Vn a -10,00 °C (609,5 V) inferiore a Vmpp max. (800,0 V)

Tensione a vuoto Vo a -10,00 °C (727,5 V) inferiore alla tensione max. dell'inverter (1000,0 V)

Tensione a vuoto Vo a -10,00 °C (727,5 V) inferiore alla tensione max. dell'inverter (1500,0 V)

Limiti in corrente

Corrente massima di ingresso riferita a Isc (9,5 A) inferiore alla corrente massima inverter (15,0 A)

Limiti in potenza

Dimensionamento in potenza (103,7%) compreso tra 80,0% e il 120,0% [MPPT 2]

RIFERIMENTI NORMATIVI

La normativa e le leggi di riferimento da rispettare per la progettazione e realizzazione degli impianti fotovoltaici sono:

1) Moduli fotovoltaici

- CEI EN 61215 (CEI 82-8): Moduli fotovoltaici in silicio cristallino per applicazioni terrestri. Qualifica del progetto e omologazione del tipo;
- CEI EN 61646 (CEI 82-12): Moduli fotovoltaici (FV) a film sottile per usi terrestri Qualifica del progetto e approvazione di tipo;
- CEI EN 62108 (CEI 82-30): Moduli e sistemi fotovoltaici a concentrazione (CPV) Qualifica di progetto e approvazione di tipo;
- CEI EN 61730-1 (CEI 82-27) Qualificazione per la sicurezza dei moduli fotovoltaici (FV) -Parte 1: Prescrizioni per la costruzione;
- CEI EN 61730-2 (CEI 82-28) Qualificazione per la sicurezza dei moduli fotovoltaici (FV) -Parte 2: Prescrizioni per le prove;
- CEI EN 60904: Dispositivi fotovoltaici Serie;
- CEI EN 50380 (CEI 82-22): Fogli informativi e dati di targa per moduli fotovoltaici;
- CEI EN 50521 (CEI 82-31) Connettori per sistemi fotovoltaici Prescrizioni di sicurezza e prove;
- CEI UNI EN ISO/IEC 17025: 2008 Requisiti generali per la competenza dei laboratori di prova e di taratura.

2) Altri componenti degli impianti fotovoltaici

- CEI EN 62093 (CEI 82-24): Componenti di sistemi fotovoltaici moduli esclusi (BOS) –
 Qualifica di progetto in condizioni ambientali naturali;
- CEI EN 50524 (CEI 82-34) Fogli informativi e dati di targa dei convertitori fotovoltaici;
- CEI EN 50530 (CEI 82-35) Rendimento globale degli inverter per impianti fotovoltaici collegati alla rete elettrica;
- EN 62116 Test procedure of islanding prevention measures for utility-interconnected photovoltaic inverters;

3) Progettazione fotovoltaica

- CEI 82-25: Guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di Media e Bassa tensione;
- CEI 0-2: Guida per la definizione della documentazione di progetto per impianti elettrici;
- UNI 10349-1:2016: Riscaldamento e raffrescamento degli edifici. Dati climatici;

4) Impianti elettrici e fotovoltaici

- CEI EN 61724 (CEI 82-15): Rilievo delle prestazioni dei sistemi fotovoltaici Linee guida per la misura, lo scambio e l'analisi dei dati;
- EN 62446 (CEI 82-38) Grid connected photovoltaic systems Minimum requirements for system documentation, commissioning tests and inspection;
- CEI 64-8: Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua;
- CEI EN 60445 (CEI 16-2): Principi base e di sicurezza per l'interfaccia uomo-macchina, marcatura e identificazione - Individuazione dei morsetti e degli apparecchi e delle estremità dei conduttori designati e regole generali per un sistema alfanumerico;
- CEI EN 60529 (CEI 70-1): Gradi di protezione degli involucri (codice IP);
- CEI EN 60555-1 (CEI 77-2): Disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da equipaggiamenti elettrici simili Parte 1: Definizioni;
- CEI EN 61000-3-2 (CEI 110-31): Compatibilità elettromagnetica (EMC) Parte 3: Limiti -

- Sezione 2: Limiti per le emissioni di corrente armonica (apparecchiature con corrente di ingresso < = 16 A per fase);
- CEI 13-4: Sistemi di misura dell'energia elettrica Composizione, precisione e verifica;
- CEI EN 62053-21 (CEI 13-43): Apparati per la misura dell'energia elettrica (c.a.) –
 Prescrizioni particolari Parte 21: Contatori statici di energia attiva (classe 1 e 2);
- CEI EN 62053-23 (CEI 13-45): Apparati per la misura dell'energia elettrica (c.a.) –
 Prescrizioni particolari Parte 23: Contatori statici di energia reattiva (classe 2 e 3);
- CEI EN 50470-1 (CEI 13-52) Apparati per la misura dell'energia elettrica (c.a.) Parte 1: Prescrizioni generali, prove e condizioni di prova - Apparato di misura (indici di classe A, B e C)
- CEI EN 50470-3 (CEI 13-54) Apparati per la misura dell'energia elettrica (c.a.) Parte 3: Prescrizioni particolari Contatori statici per energia attiva (indici di classe A, B e C);
- CEI EN 62305 (CEI 81-10): Protezione contro i fulmini, serie;
- CEI 81-3: Valori medi del numero di fulmini a terra per anno e per chilometro quadrato;
- CEI EN 60099-1 (CEI 37-1): Scaricatori Parte 1: Scaricatori a resistori non lineari con spinterometri per sistemi a corrente alternata;
- CEI EN 60439 (CEI 17-13): Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT), serie;
- CEI 20-19: Cavi isolati con gomma con tensione nominale non superiore a 450/750 V;
- CEI 20-20: Cavi isolati con polivinilcloruro con tensione nominale non superiore a 450/750
 V:
- CEI 20-91 Cavi elettrici con isolamento e guaina elastomerici senza alogeni non propaganti la fiamma con tensione nominale non superiore a 1 000 V in corrente alternata e 1 500 V in corrente continua per applicazioni in impianti fotovoltaici.

5) Connessione degli impianti fotovoltaici alla rete elettrica

- CEI 0-16: Regola tecnica di riferimento per la connessione di utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica;
- CEI 0-21: Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica;
- CEI EN 50438 (CEI 311-1) Prescrizioni per la connessione di micro-generatori in parallelo alle reti di distribuzione pubblica in bassa tensione;

Per la connessione degli impianti fotovoltaici alla rete elettrica si applica quanto prescritto nella deliberazione n. 99/08 (Testi integrato delle connessioni attive) dell'Autorità per l'energia elettrica e il gas e successive modificazioni. Si applicano inoltre, per quanto compatibili con le norme sopra citate, i documenti tecnici emanati dai gestori di rete.

CONCLUSIONI

Dovranno essere emessi e rilasciati dall'installatore i seguenti documenti:

- manuale di uso e manutenzione, inclusivo della pianificazione consigliata degli interventi di manutenzione;
- progetto esecutivo in versione "come costruito", corredato di schede tecniche dei materiali installati:
- dichiarazione attestante le verifiche effettuate e il relativo esito;
- □ dichiarazione di conformità ai sensi del DM 37/2008;
- certificazione rilasciata da un laboratorio accreditato circa la conformità alla norma CEI EN 61215, per moduli al silicio cristallino, e alla CEI EN 61646 per moduli a film sottile;
- certificazione rilasciata da un laboratorio accreditato circa la conformità del convertitore c.c./c.a. alle norme vigenti e, in particolare, alle CEI 11-20 qualora venga impiegato il dispositivo di interfaccia interno al convertitore stesso;
- certificati di garanzia relativi alle apparecchiature installate;
- garanzia sull'intero impianto e sulle relative prestazioni di funzionamento.

La ditta installatrice, oltre ad eseguire scrupolosamente quanto indicato nel presente progetto, dovrà eseguire tutti i lavori nel rispetto della REGOLA DELL'ARTE.

